Optical orthogonal codes: Their bounds and new optimal constructions

نویسندگان

  • Ryoh Fuji-Hara
  • Ying Miao
چکیده

A (v, k, λa, λc) optical orthogonal code C is a family of (0, 1)-sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λa for any x = (x0, x1, . . . , xv−1) and any integer i 6≡ 0 mod v; and (2) ∑ 0≤t≤v−1xtyt+i ≤ λb for any x = (x0, x1, . . . , xv−1), y = (y0, y1, . . . , yv−1) with x 6= y, and any integer i, where subscripts are taken modulo v. The study of optical orthogonal codes is motivated by an application in optical code-division multiple-access communication systems. In this article, upper bounds on the size of an optical orthogonal code are discussed. Several new constructions for optimal (v, k, 1, 1) optical orthogonal codes are described by means of optimal cyclic packing families. Many new optimal optical orthogonal codes with weight k ≥ 4 and correlation constraints λa = λc = 1 are thus produced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-Dimensional Optical Orthogonal Codes with Ideal Autocorrelation-Bounds and Optimal Constructions

Several new constructions of 3-dimensional optical orthogonal codes are presented here. In each case the codes have ideal autocorrelation λa = 0, and in all but one case a cross correlation of λc = 1. All codes produced are optimal with respect to the applicable Johnson bound either presented or developed here. Thus, on one hand the codes are as large as possible, and on the other, the bound(s)...

متن کامل

Optical orthogonal codes-New bounds and an optimal construction

Datatransmission Linköpings Universitet OC2005 – p. 1/46 References Optical orthogonal codes-new bounds and an optimal construction,

متن کامل

Optical Orthogonal Codes from Singer Groups

We construct some new families of optical orthogonal codes that are asymptotically optimal. In particular, for any prescribed value of λ, we construct infinite families of (n, w, λ)-OOCs that in each case are asymptotically optimal. Our constructions rely on various techniques in finite projective spaces involving normal rational curves and Singer groups. These constructions generalize and impr...

متن کامل

New Space/Wavelength/Time optical codes for OCDMA

New constructions of 3-dimensional optical orthogonal codes are presented. In each case the codes have ideal autocorrelation λa = 0, and cross correlation of λc = 1. All codes produced are demonstrated to be optimal. The constructions utilize a particular automorphism (a Singer cycle) of PG(k,q), the finite projective geometry of dimension k over the field of order q, or its affine analogue in ...

متن کامل

Geometric constructions of optimal optical orthogonal codes

We provide a variety of constructions of (n,w, λ)-optical orthogonal codes using special sets of points and Singer groups in finite projective spaces. In several of the constructions, we are able to prove that the resulting codes are optimal with respect to the Johnson bound. The optimal codes exhibited have λ = 1, 2 and w − 1 (where w is the weight of each codeword in the code). The remaining ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2000